Forecast Methods for Time Series Data: A Survey

نویسندگان

چکیده

Research on forecasting methods of time series data has become one the hot spots. More and more are produced in various fields. It provides for research analysis method, promotes development research. Due to generation highly complex large-scale data, construction models brings greater challenges. The main challenges modeling high complexity low accuracy poor generalization ability prediction model. This paper attempts cover existing classify them. In addition, we make comparisons between different list some potential directions forecasting.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Forecast Methods in Regression Models for Categorical Time Series

We are dealing with the prediction of forthcoming outcomes of a categorical time series We will assume that the evolution of the time series is driven by a covariate process and by former outcomes and that the covariate process itself obeys an autoregressive law Two forecasting methods are presented The rst is based on an integral formula for the probabilities of forthcoming events and by a Mon...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Time Series Abstraction Methods - A Survey

In knowledge discovery from time series the goal is to detect interesting patterns in the series that may help a human to better recognize the regularities in the observed variables and thereby improve the understanding of the system. Computer programs are very good in number crunching, but knowledge arises only in the head of a human. Ideally, knowledge discovery algorithms therefore use time ...

متن کامل

Tourism Time Series Forecast

In this chapter four combinations of input features and the feedforward, cascade forward and recurrent architectures are compared for the task of forecast tourism time series. The input features of the ANNs consist in the combination of the previous 12 months, the index time modeled by two nodes used to the year and month and one input with the daily hours of sunshine (insolation duration). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3091162